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SUMMARY

The introduction of weights for the yields of the different cultivars in the different
blocks enables us, while carrying out joint regression analysis (JRA), to consider the
agricultural significance of the conditions pertaining to the blocks in a network. Mo-
reover it is now possible to use incomplete blocks, thus lighting the local designs and
enabling a better coverage of the region under study. Namely, this happens when o«
designs are used. To carry out the regressions adjustment for weighted linear JRA an
algorithm is derived from the sum of sums of weighted residues. Only linear regres-
sions are considered since the use of higher degree regressions does not significantly
improve the adjustment.

KEY WORDS: joint regression analysis, incomplete blocks, randomized blocks, envi-
ronmental indexes.

1. Introduction

Joint regression analysis (JRA) has been widely used in the joint analysis of design
networks for cultivars comparison. In the classical version of the technique the designs
in the network are randomized blocks. The J cultivars to be compared are present in
every of the n blocks in the network. Following Gusméo (1985) the average yield of
each block is used as a measure of it’s productivity in the year under consideration.
This productivity in the block is the environmental index for that year. The name of
the technique was derived from the fact that it uses simultaneous linear regressions of
the cultivars yields on the environmental indexes. This technique is straightforward,
but has several limitations:
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— All blocks are given the same relevance. Despite the regions covered by a de-
sign network having to be sufficiently homogeneous, see Gusmao et al. (1989},
some designs and the corresponding blocks may be located in more representative
agricultural situations than others.

— The technique can only be applied in the complete case in which all cultivars are
present in all the blocks.

— The average of the yields in a block is taken as the true value of the corresponding
environmental index, which is only approximately correct.

To overcome these limitations we introduce weights p;;, ¢ =1,...,n; j =1, ....., J,
for the pairs (block; cultivar). These weights will be null for absent cultivars and
may take in consideration the relevance of the agricultural conditions. It may be con-
venient to give value one to the largest weights in order to standardize their values.
Moreover, we will use least squares to estimate the environmental indexes and the re-
gression coefficients. The technique could be extended to use higher order polynomial
regressions, but (see Mexia et al., 1997; 1999) in many situations linear regressions
give quite similar results.

As a parting remark we point out that JRA can now be applied when « designs
are used, as is so often the case nowadays.

2. Adjustment

With z = (zy,...,2,) the vector of environment indexes, @ = (ay,...,a5) and § =
(By,---, By) the vectors of regression coefficients, using least squares leads to minimi-
zation of

J =n '

S(z,0,8) =Y Y pii(Yij — a5 — B;zi)?,
J=11i=1

where Yj; is the yield in the i-th block of the j-th cultivar if it is present (if the cultivar

is absent, p;; = 0 and the value Yj; is irrelevant).

A convenient algorithm to carry out this minimization is the ZIG-ZAG algorithm
thus called since it alternatively minimizes S(z, ct, 3) with respect to the regressions
coefficients and to the environmental indexes.

To apply this algorithm we start by adequately choosing an initial vector zy =
(zo1, ---, ZTon)- In the complete case we can use, as in classical JRA, the vector of block
average yields. If| as in « designs, the blocks are grouped in super-blocks that contain
every cultivar, for each block we can take the average yield of its super-block. In other
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less structured cases we can try to use for each block its average yield. Once z§ is
chosen, we minimize with respect to a and 8. Since

S(zo, @, B) Z me(ym ] _'BJ"""O")2

=1 Li=1

we can minimize separately the
n
Zpij(Y,-j — 05 — ,3_7'1701')2,j == 1, ey J,
i=1
thus obtaining the well known estimates

Bl L — Z?:l Pij Z?:l p"J‘TOlKJ Zz—l PijToi 21_1 pu)/zg J -1
= = =1...
! D1 Pij 2oy Pii % — (i Pijoi)?

D i1 PiiYij _ ~1 _ i1 Pij%o; i=1,..J
n n yJ] = dyeeny do
D1 Pij DY

Qy; =

It would simplify these expressions if we could assume that Y  p;; =1, j =

.,J, but this is not always possible since, for instance, different cultivars may be
present at different locations. In the complete case or when blocks are grouped in
complete super-blocks, one cultivar appearing once in each super-block, we can make
this assumption.

Once &; = (@3, .., 1) and 31 = (Bn, ...,E”) are obtained, we minimize with
respect to x. Since S(z, a1,8,) = Y iy hi(zi | @1, 8;), with

J
hi(zs | a1, 81) =Y pij (Vi — 8 — Byyzi)%i=1,..,n
=1
we have only to minimize each of the h;(z | &, El) with respect to z. It is straight-
forward to show that the minimums are

J -
E,-=1 PijB1;Yij — Z -1 Pualaﬁlg

T = i=1,...,n.

J
z =1 pz]ﬂl]
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It is also straightforward to show that, with =1 = (211, ..., Z1,),

§1 = 5($1,51B1) =

n 2 n "
= Z Zpij Y- S | - By; Zpij Y — __1_111 z; - S
e 2 Pis =1 2. Pij > Pij
i=1 = &

As it will be shown in the Appendix, we may rescale the estimated environmental
indexes in order to maintain, from iteration to iteration, the minimum and maximum
estimated environmental indexes. In this way the range of variation of the indexes is
stabilized throughout the application of the algorithm. To do this rescaling we have
only to replace the x1; by the

My —

mo
_T'rn_l(x” d ml),

'fli:mo—f-M
1

where the mg and m; (Mp and M) are the minimums (maximums) of the {Zyy, ..., Zon}
and the {Z11, ..., T1n }, respectively.

We can now initiate a second iteration using Z; = (%11, ...,%1,) as a provisional
vector of estimated environmental indexes. As before we start by minimizing for a
and § before minimizing for z. Then we obtain the sum §2 of sums of squares for
residues and rescale the vector of estimated environmental indexes.

This procedure must be repeated until the difference §m+1 —§m between successive
sums of squares of residuals falls below a limit that is set before the calculations are
started.

3. An application

Our first example concerns a network of eleven randomized block designs. These
experiments were carried out in 1992 and 1993 by Estacio Nacional de Melhoramento
de Plantas (the Portuguese plant breeding board) who kindly allowed us to use the
yield data. Each design had four blocks and all nine wheat cultivars (Celta, Helvio,
TE9006, TE9007, TE9008, TE9110, TE9115, TE9204, Trovador) were present in each
block. The yields in the different designs were, according to agricultural relevance,
given the weights: 0.5; 0.6; 0.7; 0.8; 0.9; 1; 0.9; 0.8; 0.7; 0.7; 0.6; 0.5.

Applying the ZIG-ZAG algorithm we obtained the adjusted regression and deter-
mination coeflicients shown in Table 1.

The adjusted regressions are jointly presented in Fig. 1. The minimum and maxi-
mum environmental indexes were 2212.59 and 8838.49.
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Table 1. Regression and determination coefficients (complete case)

Cultivar «a B R?
Celta -341.03 1.21 0.90
Helvio 21.74 1.03 0.92
TE9006 -546.89 1.13 0.87
TE9007 -386.72 1.09 0.92
TE9008 460.71 0.93 0.89
TE9110 -252.41 0.92 0.80
TE9115 1375.00 0.52 0.50
TE9204 -19.35 1.09 0.90
Trovador -311.04 1.07 0.89

12000 -

Yields (kg/Ha)

2000
2400
2800
3200
3600
4000
4400

Environmental Index

~——CELTA ——Helvio —&—TE9006 ——TE9007 —¥—TE9008 —e—TE9110
—+—TES115 —=—TEY204 ——Trovador

Figure 1. Joint linear regressions, the complete case

Next we consider a network of a designs where data was kindly made available
by the Research Center for Cultivar Testing at Stupia Wielka. There were six field
experiments, each with four super-blocks of five blocks. In each block four cultivars
of winter rye were present.

As stated above we used as initial environmental indexes the super-block averages
in order to apply the ZIG-ZAG algorithm. The results of the adjustments are given
in Table 2. The adjusted regressions are presented in Fig. 2. The minimum and
maximum environmental indexes were 3613.33 and 7273.33.
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Table 2. Regression and determination coefficients (incomplete case)

Cultivar « B R?
URSUS —-2360.47 1.52 0.97
RAH 797 -2178.01 1.43 0.98
ESPRIT -1397.61 1.32 0.94
RAH 897 -1496.16 1.30 0.97
RAPID -1413.96 1.29 0.97
MARDER -1344.10 1.29 0.93
RAH 496 -1232.25 1.28 0.95
RAH 596 -966.31 1.19 0.95
WID 196 -611.02 1.15 0.92
WARKO -982.47 1.13 0.95
AMILO —954.34 1.11 0.93
ADAR -567.53 1.04 0.97
CHD 296 -284.94 1.00 0.88
SMH 1195 -458.55 1.00 0.90
RAH 697 390.54 1.00 0.87
ZDUNO -245.97 0.99 0.95
CHD 396 -292.51 0.98 0.91
SMH 1295 -175.81 0.96 0.94
NAD 195 382.31 0.90 0.91
SMH 1094 660.28 0.79 0.88

3000 3400 3800 4200 4600 5000 5400 5800 6200 6600 7000 7400
Environmental index

——a—URSUS —8—RAH 797 ———ESPRIT ———RAH 897 —&— RAPID

—a&— MARDER —%—RAH 496 —%——RAH 596 WID 196 WARKO*
—e—— AMILO —6—ADAR —+—CHD296 --4--SMH1195 .. --RAH697
- - - - -ZDUNO --%--CHD396 --x--SMH1295 ...o --NAD195 SMH 1094

Figure 2. Joint linear regressions, the incomplete case

7800



Weighted linear joint regression analysis 39

Thus the ZIG-ZAG algorithm is equally easy to apply in both the complete and
incomplete case with o designs and the final results are of the same type This is
interesting since the use of o designs is now widespread.

4. Appendix

We now consider briefly certain results useful to establish the existence of minimums
and the possibility of rescaling. We start with

PROPOSITION 1. Writing (21, a1, B,)7(z2, 2, 8,) when, with ¢ # 0, o = cx;,
oy = o and By = ¢ B;, we establish an equivalence relation in R™ x R x R’. If
(z1,01,B1)7(22, 02, By), then S(z2, a2, 85) = S(x1, 1, 6,). The goal function S takes
all its values for x # 0,,, where 0, is the vector of n zeros, on'V = {(z, e, B); || = ||= 1}
and has a set of absolute minimums saturated for .

Proof. 1t is straightforward to show that 7 is an equivalence relation. Besides this, if
(21, 01, B1)T(22, 02, B), Yij—rzj—Po;zai = YVij—an;—Bymr, i =1,.,m, 5 = 1,..., J,
and so S(x2, a2, B5) = S(z1, a1, 8,). Moreover, taking ¢ =|| z; ||, whenever z; # 0,,
we get (2, s, ;) € V such that (z1, 4, 8,)7(z2, a2,8,) and so, according to the
second part of the thesis, all the values of S(z,a, ), for z # 0,, are taken V. If
|z |= 1 we have S(z, e, 8) > S(z,&(x), B(x)).

Now, according to Weierstrass theorem, S(z) = S(z,&(z), 8(x)) has at least an
absolute minimum in ®; = {z; || = ||= 1}. These absolute minimums of S(z) are
the absolute minimums of S(z,«,B), for z # 0,. Since S(0,,a,8) = S(z,,0) >
S(z,&(x), B(x)), the absolute minimums of S(z,a, B) will have = # 0,,.

Lastly, since S(z, «, §) takes the same value for all points in a 7 equivalence class,
the set of its absolute minimums is saturated for 7. O

When we rescale the vector of estimated environmental indexes at the end of each

iteration we are applying this proposition. Moreover, it guarantees the existence of
least squares estimators.

During the u-th iteration of ZIG-ZAG algorithm we minimize the functions S; (o, 3 |

Ty—1) = S(Ty—1,,B) and S(z | au,,B ) = (=, au,ﬂ ). It is interesting to observe
that

Sl(aaﬂ I Eu——l) - Z [Z ng()/zj aj ""6j§(u—l)i)2:|

7=1 Li=1
o~ n J - ~ 2
So(2 | G, B,) = X lez'j(ﬁj — Quj — By Ti)

and that the functions Y, pi; (Yij — o —B;Fw-1)i)%7i=1,..,J,and Z;=1 pij (Yij—
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Qyj — Bujxi)2, i=1,...,n, are convex in (e;,0;), j = 1,..,J, and in z;, i = 1,...,n,
respectively. Thus S;(e, | Z,—1) and Sa(z | &u,ﬁu) will be convex in (o, 8) and in
z, respectively, since when we add convex functions of distinct variables we obtain
convex functions. Then, see Bazaraa et al. (1992, p. 113), Si(e, 8 | Zu—1) and
Sy(z | &y, B,) will have unique minimums.
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Laczna analiza wazonej regresji liniowej
STRESZCZENIE

Wprowadzenie wag dla plonéw réznych odmian w réznych blokach pozwala na uwzgle-
dnienie w analizie regresji agrotechnicznej istotnoéci réznych blokéw w serii doswiad-
czen. Pozwala tez na wykorzystanie blokéw niekompletnych (np. ukladéw typu a), .
co wplywa na zmniejszenie do§wiadczen i lepsza ich reprezentatywnoéé. Dla przepro-
wadzenia wazonej regresji liniowej opracowano algorytm oparty na sumach wazonych
reszt. Rozwaza sie tylko regresje liniowa, gdyz regresja wyzszego rz¢du nie wprowadza
istotnej poprawy dopasowania.

KEY wORDS: laczna analiza regresji, bloki niekompletne, bloki losowane, indeksy
Srodowiskowe.



